
Release Management
Principles for LFN
Projects

Introduction
› The purpose of this presentation is to give an overview of some basic

release management techniques and strategies to consider for LFN
projects

› Every project is different, so these techniques will need to be adapted as
needed

12/3/19 2

Cadence

› Most projects choose to release on a periodic basis, say twice per
year, or every 6 months.

› You may feel that you want to be more aggressive, but remember
that this is an open source project and the participants are typically
working on a part-time basis.

› Also, be careful about maintenance releases, particularly if you are
thinly resourced
› Distracts from the next major release
› Often requires an independent CI workflow

Release Phases
› Once you have decided on a cadence, you can then break that time

period into different phases. Again, each project will be a little different,
but typically, these include:
› Requirements collection and project release planning
› Development
› Component test and debug
› Integration test

› As you are determining these phases, also think about who will be doing
the work. For example,
› Requirements subcommittee
› Integration team
› Release manager

Requirements Gathering
› You will want to decide on a set of requirements for the release that support

your project’s high level purpose and goals
› These requirements should be analyzed to determine which project teams

are affected
› It’s essential that the projects affected by the requirement agree to do

the work. If not, then the requirement should be altered or deferred.
› It’s not unusual to have more requirements than capacity. This means that

the requirements will need to be prioritized, so that the lower priority issues
may be deferred

› Finally, the TSC should vote on whether to approve the proposed
requirements for the release

(Sub)Project Release Planning
› Each project participating in the release must submit a project release plan that

includes:
› Scope
› Features (typically a list of Jira epics)
› Test & verification
› Dependencies
› Deliverables

› This helps the TSC, other projects, the integration team, the release manager,
and marketing function understand what the project intends to accomplish

› It also provides some assurance that the project team has put thought into all
aspects of the release

› Use a template

Release Milestones

› Release milestones are useful for gauging progress relative to the
schedule.

› Milestones are placed at the end of each phases
› Keep your milestones fairly general. Avoid tying milestones to specific

technology or projects.
› This will keep your release process from going stale as technology and projects

change.
› Each milestone requires effort by the entire team, therefore, keep the

number to a minimum, say 5 - 7

Release Milestones

› To be effective, each milestone should have measurable criteria. A
milestone might sound good on paper, but it’s useless if it can’t be
measured

› Use Jira to document the criteria as a set of tasks for each project team.
› The release manager may then check the status of the project teams by

reviewing the status of the release management tasks assigned in Jira
› The TSC should approve that the release criteria has been met before

moving on.
› This may require adjusting the schedule or agreeing to exceptions, or to move certain

tasks until later in the release.

Example - ONAP Guilin

› Schedule
› Status

https://wiki.onap.org/x/QfEVB
https://wiki.onap.org/x/KyJIB

